FUSE researchers /

Cohort 2 (2020)

Mohammed Abdulla

Sonar Systems Use Pressure Wave to Detect an Object in Maritime Domain

Ultrasonic technologies are used to detect acoustic signals such as those in the maritime domain (sonar systems), during NDT/E inspections or in medical diagnostic procedures contain various electronics building blocks. For instance, the acoustic sensor, which can be often based on piezoelectric or capacitive micromachined ultrasonic transducer (PMUT or CMUT) technologies, converts the detected pressure wave into an electrical signal before electronics amplify, filter, and digitise this signal, which is then processed and an image of the object under detection is projected to the operator. The demand on the next generation of ultrasonic sensor systems increasingly requires them to be contained within a smaller footprint and possess lower power demands while exhibiting enhanced detection capability. The electronics used in these systems are typically based on printed circuit board (PCB) technologies which can have a large footprint and high-power demands which may require additional infrastructure to prevent overheating.

This project will investigate the development of ultralow-power millimetre-sized integrated electronics, referred to as system-on-chip (SoC), for incorporation into compact acoustic sensors for use in the maritime domain, where payload and power limitations are critical. Integration of SoC with CMOS (complementary metal oxide semiconductor) technology will allow the implementation of a wide range of acoustic sensors for a spectrum of sensing and imaging applications where high fill factors, good signal to noise ratio, small size and low power consumption are fundamental to operational success.

This project will explore the miniaturisation of low power electronics which are compatible for CMUT-based sensors deployed in the maritime domain. Its provisional objectives are Form a fundamental understanding of design and fabrication techniques used in the development    of milli-metre sized electronics (using integrated CMOS technology).

  • Design different circuit blocks e.g. the power management unit, analogue front end consists of low noise amplifier (LNA), low pass filter, digitization backend (e.g. ADC) and circuitry techniques for ripple cancellation.
  • CMOS-Acoustic device integration techniques e.g. monolithically or flip-chip technology
  • Explore the main trade-offs and main contributors to circuit; power consumption, noise generation, operational bandwidth and dynamic range, and prototype candidate solutions.
  • Form a fundamental understanding of sonar, underwater detection and the maritime environment.
  • Demonstrate candidate(s) sonar transducers in a representative environment. For instance, at a Thales UK facility.

The project will be conducted in the Microelectronics Lab at the Centre for Medical and Industrial Ultrasonic (CMIU). It will give full knowledge of ultrasonics, electronics design, PCB design, IC integration circuit, control system, programming that will build ultrasonic SOC system.

Project External Partner: Thales

Dennis Abraham

I’m Dennis Abraham, a graduate from the University of Glasgow in BSc Aeronautical engineering. I am sure that Fuse CDT programme is a highly valuable opportunity that will greatly aid me to develop strong working relationships with my fellow researchers, academics and industrial partners. Further, I am hopeful and confident that from my time at Fuse and the PhD experience, will allow me to push boundaries in the fields of Non-destructive testing and medical imaging in ultrasound. I eagerly look forward to working alongside Industry to proactively carryout research providing innovative and valuable solutions in field of ultrasound.

Haaris Azhar

I am working towards my MSc in Ultrasonic Engineering at the FUSE-CDT and I am very much enjoying learning about this interesting technology and its applications. My interests relating to ultrasound lie mainly in the non-destructive testing (NDT) area, especially in the context of the aerospace industry.

I am currently working on my MSc Project which is based on improving the quality of scans carried out on composite material such as carbon-fibre reinforced polymer (CFRP). This is a challenging yet interesting project which I am carrying out under the supervision of Prof. Tony Gachagan.

Dion Blackburn

Ultrasonic Evaluation of Additively Manufactured Titanium Components

Titanium is an important material used in a number of industries such as aerospace, medical and marine. In recent years the use of additive manufacturing has become more prolific within a number of industries. However, during the additive manufacturing process materials are exposed to extreme thermal cycles which can negatively impact the material properties of the completed component. My PhD project will look into the use of ultrasonic non-destructive evaluation (NDE) to assess the structural integrity of titanium as it undergoes additive manufacturing processes.

The central aims of this project are:
• To develop models of ultrasonic wave propagation in titanium microstructures
• To use these models as a basis to tackle the inverse problem: given scattered ultrasonic wave data , can we comment on the underlying texture of Titanium alloy?

Project External Partner: Advanced Forming Research Centre

Matthew Dowhan

My name is Matthew, and I am a PhD student with FUSE. I have a master’s degree in Biofluid mechanics from the university of Strathclyde and a background in physics, computational fluid dynamics (CFD), piezoelectric materials and deposition systems. My masters project involved designing, meshing and simulating a simplified aortic valve in order to measure the jet velocity and pressure flowing through the valve at different stages of closure to functionally mimic stenosis. This was done by utilizing a variety of software including ANSA and ANSYS Fluent. My current area of interest is in cardiac imaging through ultrasound and smart stent technology. My focus in my FUSE future is on smart stent technology, either in helping add or create an affordable biological stent, or in a stent capable of monitoring the dynamics within its vessel.

Panos Kamintzis

Automated Laser Ultrasonics for Metal 3D Printing Inspection

Additive Manufacturing (AM) is an exponentially growing manufacturing technique which offers numerous advantages over alternative methods in terms of design flexibility, waste and lead-time reduction. More specifically, the Wire Arc AM (WAAM) technology enables the production of metal structures both small and large, while reducing the manufacturing duration and cost by approximately 50%. Some of the alternative, subtractive methods include forging and extensive machining which can result in higher costs and material waste.

The aim of my PhD project is the automation of remote ultrasonic inspection of components using robotic means coupled with laser ultrasonics to perform in-process Non-Destructive Evaluation during the WAAM cycle. Non-Destructive evaluation (NDE) is a widely used method of quality assurance and structural integrity in the manufacturing industry. Using laser ultrasonics rather than transducer-based ultrasound enables a non-contact inspection which is ideal for in-process inspection in the manufacturing industry, since the manufacturing process radiates high temperatures. Laser ultrasound can also cope with the complexity of the components among other advantages.

Project External Partner: WAAM3D

Emily Kerr

Hi, I’m Emily, and I am currently in my first year of the FUSE CDT program. I graduated from the University of Strathclyde with a Masters degree in Product Design Engineering. Out of university, I am a STEM ambassador and a member of WES (Women in Engineering Society) – a charity that promotes and supports women in STEM.

I am looking forward to expanding my knowledge and experience in ultrasonic engineering and learning about the latest technological developments in the field of ultrasonics. Currently, I am beginning my research project, which involves developing an algorithm for ultrasonic immersion testing of non-planar surfaces to create a fully focussed B-scan image of the test component to identify defects. In addition, I am enjoying learning about the methods of ultrasonic NDT imaging and understanding how this algorithm can be applied to solve complex problems in industry.

Stewart Key

I graduated from The University of Strathclyde in 2016 with a BSc (Hons) in Computer Science. Following a successful internship at JPMorgan I joined their Software Engineer Programme which culminated in my promotion to Associate in 2019. During my tenure there I led initiatives automating processes, became our in-team expert on security, worked on cloud migration and upgrading our technology stack. I worked as a STEM ambassador, mentored graduates, and assisted in charity projects. With a lot to learn ahead of me I’m looking at all FUSE projects with an open mind, but am particularly interested in the medical field, projects involving machine learning are my current focus.

Louise MacDonald

My name is Louise Macdonald, and I am a first year FUSE PhD student. I graduated from the University of Strathclyde in 2019 with a BSc (Hons) in physics and achieved distinction in my MSc in Nuclear Technology at the University of Glasgow in 2020. My project for my undergraduate degree was using laser plasma Wakefield acceleration to see if it was feasible to produce Lead-212 from a Radium-226 source and my MSc project was on evaluating the neutron dose from proton therapy using Bonner spheres.  I am interested in the medical applications of ultrasound and would be interested in doing either a PhD or an EngD.

Hilde Metzger

Cavitation (ultrasonically driven bubble activity) has a variety of applications in the medical and industrial sectors. However, there is currently no framework for the measurement and reporting of cavitation which means that the scientific literature is inconsistent, and it is difficult to compare studies from different groups. Current issues include metrics, such as the mechanical index, that are being used beyond their limitations and a lack of a proper classification system means that cavitation is often categorised as either stable or inertial with little scientific reasoning.

The aim of my project is to develop a scientifically grounded framework that will tackle these issues and will allow for meaningful comparison between similar studies over a range of medical and industrial applications. To do this, I will study many types of cavitation in experiments that are representative of the applications. High-speed imaging with parallel acoustic monitoring will help determine a fundamental understanding of the acoustic cavitation signal, which will allow for the critical analysis of current practices and propose new ones.

In partnership with Precision Acoustics Ltd, I hope to share my findings with the British Standards Institute (BSI) committee on ultrasonics and contribute to international standards that will ensure more consistency in cavitation research.

Project External Partner: Precision Acoustics

Lyne Mkoh

An Enhanced Biopsy Needle for Endobronchial and other Biopsy Procedures

As a current PHD student in the Future Ultrasonic Engineering (FUSE) CDT, my research theme in collaboration with the NHS is to explore a re-engineered transbronchial biopsy needle to improve sample tissue yield. 

In medicine, especially in cancer medicine, biopsy procedures are of critical importance as they allow tissue sampling by insertion of a hollow needle for use in various medical tests. One type of needle biopsy currently in use is endobronchial ultrasound guided transbronchial needle aspiration (EBUS-TBNA) which, is used to sample lymph node tissue to stage cancers and diagnose granulomatous diseases.  During the EBUS-TBNA procedure, a tubular medical imaging tool (a bronchoscope) is inserted through the patient’s mouth into the bronchial tree. Once the right location in the bronchial tree is found using the attached ultrasound system, a needle pierces through the bronchial wall into the lymph node to collect the tissue sample. Several medical institutions around the world, have found that the procedure suffers from a sub-diagnostic ability as the devices currently use push the tissue away rather than allowing it to enter the needle, due to the needle tip shape. Because of that, the diagnostic yield is characterized by the quality if the collected tissue sample, is estimated to be 61%. A failed diagnostic procedure slows down treatment and causes additional strain on patients and hospital infrastructure. 

The aim of my PHD project therefore will be to design a better needle. This will be achieved by understanding the properties of the tissue and its interaction with the needle. To achieve the tasks, several areas will be looked at: 

  • The needle types, tissue type and insertion speed. 
  • Through examination, what happens at the tip of the needle during the puncture of a membrane involving cadaver and critical specimen will be explore. 
  • A model describing the interaction between the different aspects of a needle-tissue interaction. This model is particularly important as it enable the detailed encoding of experiment equipment, condition, design and results and can therefore be used as the blueprint for a database of experimental needle interaction with human tissue. 

I am excited to move forward in this research and I hope my findings will contribute to better medical practice at an international level. 

Project External Partner: NHS

Olubunmi Onanuga

Surgery and Therapy with Power Ultrasonics Devices made with Lead-Free Materials

In ultrasonic devices, the piezoelectric material is the principal source of ultrasound. In ultrasonic devices used in therapeutic and surgical applications, the most commonly used piezoelectric material is lead zirconate titanate (PZT), a lead-based piezoelectric ceramic. However, due to the adverse effect of lead on human health and the environment, as well as the health and safety legislation relating to its use in electronic and medical devices, there is an increasing demand for lead-free piezoelectric materials.

The performance of power ultrasonic devices is reliant on the elastic, piezoelectric and dielectric (EPD) constants of the piezoelectric material adopted in the design process. Also, the EPD matrices, populated by these constants, are vital inputs for finite element modelling used in the design of devices. Hence, it is essential to obtain the full elastic, piezoelectric and dielectric constants of new lead-free piezoelectric materials in order to evaluate their properties for use in power ultrasonic devices for therapy and surgery.

The overall aim of my PhD project, a collaboration between FUSE CDT and Meggitt A/S, is to propose novel power ultrasonic device designs by combining finite element analysis with the full characterisation of newly developed lead-free piezoelectric materials. To achieve this aim, a method which combines conventional characterisation techniques with a finite element model optimisation algorithm will be used to obtain the EPD constants for a range of lead-free materials. The research will investigate how these properties of the lead-free materials can be optimally employed in power ultrasonic devices through proposing novel transducer configurations.

Project External Partner: Meggit

Jayden Tomkinson

During surgery with ultrasound imaging the ultrasound probe can be placed in a less than ideal position leading to suboptimal images for the surgeon to use. Usually in minimally invasive surgery the imaging system is controlled by the least experienced member of the operating team leading to more difficult images for the surgeon to use as guidance. It is often difficult to find a suitable acoustic window to image while operating or treating noninvasively using ultrasound, and this challenge is compounded by the need to provide good acoustic coupling between transducers and the body. My project looks towards a system than can autonomously scan, collect, and display clear real-time ultrasound images of the region of interest.

My initial research is into creating a simulation of the robot manipulator and focusing on the workflow and key parameters needed to successfully simulate an ultrasound probe. This would include the limitations of robotic manipulators movement and force applied to the skin. The main aim of this project is to support surgery with real time ultrasound imaging.

Project External Partner: Verasonics